Apriori Implementation to Find the Association Rules of the New Student Admission Data of STMIK AMIKOM Surakarta
Abstract
The change in form from an academy to a school of Information and Computer Management allows STMIK AMIKOM Surakarta to accept new undergraduate students. One way to find out the characteristics of prospective students is to study the previous data on new student admission data. The research conducted is the implementation of data mining using association rules with the Apriori algorithm on registration data for new students at STMIK AMIKOM Surakarta. The reason for using association rules in this study is the data used even though there are classes that can be used for classification, but the class that appears in the data is still dominated by one class. The stages of this research start from the study of literature, the general process of data mining, and the analysis and evaluation of the established association rules. The results of the implementation of the Apriori algorithm to find association rules in the new student admissions data of STMIK AMIKOM Surakarta there are 23 rules that meet a minimum support of 0.3 and a minimum confidence of 0.9 which consists of a minimum of 3 antecedents. Out of the 13 attributes used as antecedent candidates, only 6 make up the a priori association-classification rules, namely gender, religion, province, type of school, study program, and registeration status.
Keywords
Full Text:
PDFReferences
AMIKOM Surakarta, “Profil STMIK AMIKOM Surakarta,” 2021. https://www.amikomsolo.ac.id/profil-amikom-surakarta/ (accessed Aug. 25, 2021).
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.
K. S. Lakshmi and G. Vadivu, “Extracting Association Rules from Medical Health Records Using Multi-Criteria Decision Analysis,” Procedia Comput. Sci., vol. 115, pp. 290–295, 2017, doi: 10.1016/j.procs.2017.09.137.
F. Rahmawati and N. Merlina, “Metode Data Mining Terhadap Data Penjualan Sparepart Mesin Fotocopy Menggunakan Algoritma Apriori,” PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log., vol. 6, no. 1, pp. 9–20, 2018, doi: 10.33558/piksel.v6i1.1390.
S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,” J. Nas. KOMPUTASI DAN Teknol. Inf., vol. VOL.1, no. NO.2, pp. 56–63, 2018.
A. Suryadi and E. Harahap, “Sistem Rekomendasi Penerimaan Mahasiswa Baru Menggunakan Naive Bayes Classifier Di Institut Pendidikan Indonesia,” Joutica, vol. 3, no. 2, p. 171, 2018, doi: 10.30736/jti.v3i2.231.
Y. H. Agustin, . K., and E. T. Luthfi, “Klasifikasi Penerimaan Mahasiswa Baru Menggunakan Algortima C4.5 Dan Adaboost (Studi Kasus : STMIK XYZ),” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 9, no. 1, p. 1, 2017, doi: 10.22303/csrid.9.1.2017.1-11.
I. Loelianto, M. S. S. Thayf, and H. Angriani, “Implementasi Teori Naive Bayes Dalam Klasifikasi Calon Mahasiswa Baru Stmik Kharisma Makassar,” SINTECH (Science Inf. Technol. J., vol. 3, no. 2, pp. 110–117, 2020, doi: 10.31598/sintechjournal.v3i2.651.
D. Aribowo and A. E. H. Setiadi, “Analisa Komparasi Algoritma Data Mining untuk Klasifikasi Heregistrasi Calon Mahasiswa STMIK Widya Pratama,” IC-Tech, vol. 13, no. 2, pp. 1–6, 2018, [Online]. Available: https://ejournal.stmik-wp.ac.id/index.php/ictech/article/view/30.
F. Yunita, “Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru,” Sistemasi, vol. 7, no. 3, p. 238, 2018, doi: 10.32520/stmsi.v7i3.388.
Mubassiran and M. I. Choldun, “Penerapan Algoritma k-Nearest Neighbors Untuk Menentukan Pola Penerimaan Mahasiswa Baru,” Improv. J. Ilm. Manaj. Inform. – Politek. Pos Indones., vol. 11, no. 2, pp. 1–7, 2019.
R. Budiman and R. Anto, “Penerapan Data Mining Untuk Menentukan Lokasi Promosi Penerimaan Mahasiswa Baru Pada Universitas Banten Jaya (Metode K-Means Clustering),” ProTekInfo(Pengembangan Ris. dan Obs. Tek. Inform., vol. 6, no. 1, p. 6, 2019, doi: 10.30656/protekinfo.v6i1.1691.
M. Rusli, S. Arifin, and A. Trisnadoli, “Pengembangan Sistem Pendukung Keputusan untuk Penentuan Lokasi Promosi Penerimaan Mahasiswa Baru,” J. Komput. Terap., vol. 3, no. 1, pp. 11–18, 2017.
A. Saifudin, “Metode Data Mining Untuk Seleksi Calon Mahasiswa,” J. Teknol. Univ. Muhammadiyah Jakarta, vol. 10, no. 1, pp. 25–36, 2018.
E. Frank, M. A. Hall, and I. H. Witten, “The WEKA workbench,” Data Min., pp. 553–571, 2017, doi: 10.1016/b978-0-12-804291-5.00024-6.
DOI: http://dx.doi.org/10.30700/jst.v12i1.1231
Article Metrics
Abstract view : 274 timesPDF - 215 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 SISFOTENIKA
This work is licensed under a Creative Commons Attribution 4.0 International License.
Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.
Jurnal Ilmiah SISFOTENIKA terindex di :
| |
SERTIFIKAT PENGHARGAAN :
Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat
Partners & Co-Organizers:
Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional.