K-Means for Clustering of Dengue Fever Prone Areas

Novianti Puspitasari, Andre Ardin Maulana, Rosmasari Rosmasari, Faza Alameka

Abstract


The number of dengue fever sufferers has increased at a reasonably high level. The high number of cases of dengue fever is sometimes different from the availability of information owned by the department or local government about the areas where dengue fever is spread. Therefore, clustering areas prone to dengue fever needs to be carried out to provide information for interested parties so that the government can take appropriate handling measures based on the level of its spread. The clustering algorithm used is K-Means. The calculation methods used are Euclidean Distance, Manhattan Distance and Minkowski Distance. Accuracy calculations of the three distance methods are carried out using the Sum of Squared Error (SSE) to determine the ideal distance calculation. In addition, SSE is also used to see the optimal number of clusters. Based on data on the number of cases of dengue fever in Samarinda City for five years from various regions, the results show that cluster C1 is a high vulnerability level, C2 is a medium vulnerability level, and C3 is a low vulnerability level. Furthermore, three clusters are the ideal number for clustering because it has a smaller SSE value. The perfect distance measurement method is the Minkowski Distance because the Minkowski Distance SSE difference is the lowest among the other distance methods, which is 13.0803.

Keywords


dengue fever; area; clustering; K-Means; SSE

Full Text:

PDF (Indonesian)

References


D. Nuroniyah, S. Nitalana, P. J. N. Wati, S. I. M. Sari, and N. G. Prihartanti, “Penguatan Kapasitas Kader Resik (Remaja Sadar Jentik) Sebagai Pencegahan Primer Demam Berdarah Dengue di Daerah Rawan Banjir,” SNHRP, pp. 1420–1425, 2022.

N. A. Pascawati, S. Sahid, S. Sukismanto, and H. Yuningrum, “Faktor yang Berhubungan dengan Pola Pengelompokkan Kasus Demam Berdarah Dengue (DBD) di Temanggung, Jawa Tengah,” Balaba J. Litbang Pengendali. Penyakit Bersumber Binatang Banjarnegara, vol. 18, no. 1, pp. 65–78, 2022, doi: 10.22435/blb.v18i1.5957.

E. A. Idris and F. Zulaikha, “Hubungan Jenis Kelamin Terhadap Kejadian DHF pada Anak di TK RA AL Kamal 4 di Wilayah Bukuan Kota Samarinda,” Borneo Student Res., vol. 2, no. 3, pp. 1592–1598, 2021.

V. Herlinda, D. Darwis, and D. Dartono, “Analisis Clustering Untuk Recredesialing Fasilitas Kesehatan Menggunakan Metode Fuzzy C-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, pp. 94–99, 2021.

F. Hardiyanti, H. S. Tambunan, and I. S. Saragih, “Penerapan Metode K-Medoids Clustering Pada Penanganan Kasus Diare Di Indonesia,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 598–603, 2019, doi: 10.30865/komik.v3i1.1666.

W. Widayani and H. Harliana, “Perbandingan Algoritma K-Means dan SFCM Pada Pengelompokkan Rumah Tangga Miskin,” J. Sains dan Inform., vol. 6, no. 1, pp. 1–9, 2020, doi: 10.34128/jsi.v6i1.200.

B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model dan Teknik Clustering,” J. Terap. Teknol. Inf., vol. 2, no. 1, pp. 23–32, 2018, [Online]. Available: internal-pdf://100.141.155.94/76-Article Text-384-1-10-20180426.pdf.

A. Saputra, B. Mulyawan, and T. Sutrisno, “Rekomendasi Lokasi Wisata Kuliner di Jakarta Menggunakan Metode K-Means Clustering dan Simple Additive Weighting,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 14–21, 2019.

T. Syahputra, J. Halim, and E. P. Sintho, “Penerapan Data Mining Dalam Menentukan Pilihan Jurusan Bidang Studi Sma Menggunakan Metode Clustering Dengan Teknik Single Linkage,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. IV, no. 2, pp. 205–208, 2018.

M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,” J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 20–24, 2019, doi: 10.30591/jpit.v4i1.1253.

S. Witanto, D. E. Ratnawati, and S. Anam, “Pengelompokan Fungsi Aktif Senyawa Data SMILES (Simplified Molecular Input Line Entry System) Menggunakan Metode K-Means Dengan Inisialisasi Pusat Klaster Menggunakan Metode Heuristic O ( N LogN ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 1, pp. 702–707, 2019.

Haviluddin et al., “A Performance Comparison of Euclidean, Manhattan and Minkowski Distances in K-Means Clustering,” in 2020 6th International Conference on Science in Information Technology: Embracing Industry 4.0: Towards Innovation in Disaster Management, ICSITech 2020, 2020, pp. 184–188, doi: 10.1109/ICSITech49800.2020.9392053.

R. D. Ramadhani and D. J. Ak, “Evaluasi K-Means dan K-Medoids pada Dataset Kecil,” in Seminar Nasional Informatika dan Aplikasinya, 2017, no. September, pp. 20–24.

N. L. Anggreini and S. Tresnawati, “Komparasi Algoritma K-Means Dan K-Medoids Untuk Menangani Strategi Promosi Di Politeknik TEDC Bandung,” J. TEDC, vol. 14, no. 2, pp. 120–127, 2020.

F. Harahap, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Clustering Kelas Siswa Tunagrahita,” TIN Terap. Inform. Nusant., vol. 2, no. 4, pp. 191–197, 2021.

Y. H. Susanti and E. Widodo, “Perbandingan K-Means dan K-Medoids Clustering terhadap Kelayakan Puskesmas di DIY Tahun 2015,” in Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami), 2017, vol. 1, no. 1, pp. 116–122.

R. Adha, N. Nurhaliza, U. Soleha, P. Studi, S. Informasi, and F. Sains, “Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia,” SITEKIN J. Sains, Teknol. dan Ind., vol. 18, no. 2, pp. 206–211, 2021.

Athifaturrofifah, R. Goejantoro, and D. Yuniarti, “Perbandingan Pengelompokan K-Means dan K-Medoids Pada Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Studi Kasus : Data Titik Panas Di Indonesia Pada 28 April 2018),” J. EKSPONENSIAL, vol. 10, no. 2, pp. 143–152, 2019.

H. Sulastri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 299–305, 2017.

M. Y. Rizki, S. Maysaroh, and A. P. Windarto, “Implementasi K-Means Clushtering dalam Mengelompokkan Minat Membaca Penduduk Menurut Wilayah,” JUST IT J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 11, no. 2, pp. 41–49, 2021, doi: 10.24853/justit.11.2.41-49.

N. T. Hartanti, “Measuring Students ’ Level of Understanding in Programming Courses with the K-Means Clustering Algorithm,” SISFOTENIKA, vol. 12, no. 1, pp. 62–73, 2022.

N. Hasanah, M. Ugiarto, and N. Puspitasari, “Sistem Pengelompokan Curah Hujan Menggunakan Metode K-Means di Wilayah Kalimantan Timur,” in Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, 2017, vol. 2, no. 2, pp. 122–126.

A. Septiarini, I. A. Thaher, and N. Puspitasari, “Pengelompokan Kualitas Kinerja Pegawai Menggunakan Metode K-Means Clustering,” Komputika J. Sist. Komput., vol. 11, no. 2, pp. 131–141, 2022, doi: 10.34010/komputika.v11i2.5518.

S. Butsianto and N. T. Mayangwulan, “Penerapan Data Mining untuk Prediksi Penjualan Mobil Menggunakan Metode K-Means Clustering,” J. Nas. Komputasi dan Teknol. Inf., vol. 3, no. 3, pp. 187–201, 2020, doi: 10.32672/jnkti.v3i3.2428.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.




DOI: http://dx.doi.org/10.30700/jst.v13i1.1337

Article Metrics

Abstract view : 191 times
PDF (Indonesian) - 191 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 SISFOTENIKA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.

 

Jurnal Ilmiah SISFOTENIKA terindex di :


   

   

  

    

    

    

   

 

 

 

ISSN Printed : 2087-7897

ISSN Online : 2460-5344


SERTIFIKAT PENGHARGAAN :

Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat

 

Partners & Co-Organizers:




Lisensi Creative Commons

Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional. Flag Counter

View My Stats>