Penerapan Least Square Untuk Prediksi Stok Barang Pada CV Pelangi Sintang

Firmandika Esa Putra, Tri Widayanti

Abstract


The daily transactions activity in CV Pelangi Sintang make pile up transactions data. This company needs big database, if it's not, that transactions data become piles of garbage. But,to providing goods, CV pelangi sintang has delayed stocks. This has an impact to production of goods process longer. Mining data has any algorithms and methods that usefull to resolve problems in CV pelangi sintang, one of them is Least Square. Least square algorithm is algorithm that much used some companies to predict the amount to be used in future. In this case, the writer will be use Least Square Algorithm to predict the sum of goods will be use in future. the goal is to predict selling of goods until get an useful information in take decision on providing goods. The result of this research is to make a desktop-based application that can predict item, so that can make CV Pelangi Sintang easy in doing item placement to be more effective and efficient. for further application development, researcher can improve Least Square Algorithm to be more simple and can improve the program design dekstop.

Keywords


Data Mining; Java; Least Square

Full Text:

PDF

References


Sianipar, 2014. Perancangan Aplikasi Data Mining Untuk Persediaan Bahan Baku Produksi Tapioka pada PT Hutahean Dengan Menggunakan Metode Least Square.

Rambe, M. Ihsan., 2014. Perancangan Aplikasi Peramalan Persediaan Obat-obatan Menggunakan Metode Lesat Square Studi Kasus : Apotik Mutiara Hati.

Hariri, Fajar Rohman., 2016. Metode Least Square Untuk Prediksi Penjualan Sari Kedelai Rosi.

Rosa, A.S., Shalahuddin,M., 2013. Rekayasa Perangkat Lunak : Terstruktur dan Berorientasi Objek. Informatika. Bandung.

Boedijoewono, Nugroho, 2007. Pengantar Statistika Ekonomi Dan Bisnis. UPP STIM YKPN

Nugroho, A., 2010, Rekayasa Perangkat Lunak Berbasis Objek dengan Metode USDP. Andi, Yogyakarta.

Pressman., 2012, Rekayasa Perangkat Lunak dan Pendekatan Praktisi (buku satu), Edisi 7. Andi, Jogyakarta.




DOI: http://dx.doi.org/10.30700/.v1i1.804

Article Metrics

Abstract view : 409 times
PDF - 580 times

Refbacks

  • There are currently no refbacks.