Aplikasi Rekrutmen Karyawan Menggunakan Artificial Neural Network dan Flask

Burhanudin Zuhri, Nisa Hanum Harani

Abstract


Kemajuan dan perkembangan terkini dalam pendekatan strategi berbasis kecerdasan buatan (Artificial Intelligence) telah banyak digunakan dalam berbagai bidang. Salah satu dampak positif dari pendekatan berbasis AI tersebut yaitu dapat meningkatkan keberlanjutan pada organisasi atau perusahaan. Dengan mengadopsi pendekatan strategi berbasis AI, perusahaan dapat meningkatkan pengambilan keputusan, produktivitas, dan kinerja sistem yang lebih baik. Saat ini, sebagian besar perusahaan belum mampu memprediksi kandidat karyawan akan bergabung atau tidak dalam perusahaan melalui proses rekrutmen karyawan. Oleh karena itu, dikembangkanlah sebuah sistem klasifikasi rekrutmen untuk mendukung keputusan pada proses perekrutan agar dapat meningkatkan kualitas sumber daya manusia pada perusahaan. Sistem klasifikasi rekrutmen karyawan ini merupakan sistem yang dapat mengklasifikasikan kandidat karyawan yang memiliki kemungkinan dapat akan bergabung dalam suatu perusahaan menggunakan salah satu pendekatan Data Science. Sistem ini dirancang menggunakan bahasa pemrograman Python serta menggunakan model hasil dari pendekatan prediksi dengan kemampuan interpretasi dari metode Deep Learning. Model pendekatan ini dilatih dengan menggunakan algoritma Artificial Neural Network (ANN) yang akan memberikan klasifikasi terbaik berdasarkan beberapa variabel yang dimiliki oleh kandidat karyawan. Dataset yang digunakan untuk membuat model sebanyak 11018 data yang telah diubah dari yang sebelumnya adalah 8995 data setelah dilakukan preprocessing data. Hasil yang didapat dengan evaluasi confusion matrix mendapatkan akurasi sebesar 78%. Dengan dibuatnya sistem klasifikasi ini, maka diharapkan perusahaan dapat meningkatkan kualitas sumber daya manusia dengan memprediksi kandidat karyawan terbaik yang berkemungkinan akan bergabung dalam perusahaan tersebut.

Keywords


Sistem Klasifikasi, Rekrutmen Karyawan, Artificial Neural Network, Flask

Full Text:

PDF (Indonesian)

References


D. Pessach, G. Singer, D. Avrahami, H. Chalutz Ben-Gal, E. Shmueli, and I. Ben-Gal, “Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming,” Decis Support Syst, vol. 134, Jul. 2020, doi: 10.1016/j.dss.2020.113290.

Y. Zhao, M. K. Hryniewicki, F. Cheng, B. Fu, and X. Zhu, “Employee turnover prediction with machine learning: A reliable approach,” in Advances in Intelligent Systems and Computing, 2018, vol. 869, pp. 737–758. doi: 10.1007/978-3-030-01057-7_56.

P. Lyons and R. Bandura, “Employee turnover: features and perspectives,” Development and Learning in Organizations, vol. 34, no. 1. Emerald Group Holdings Ltd., pp. 1–4, Jan. 20, 2020. doi: 10.1108/DLO-02-2019-0048.

R. S. Yadav, S. S. Dash, S. Chakraborty, and M. Kumar, “Perceived CSR and Corporate Reputation: The Mediating Role of Employee Trust,” Vikalpa, vol. 43, no. 3. SAGE Publications Ltd, pp. 139–151, Sep. 01, 2018. doi: 10.1177/0256090918794823.

Y. Q. Zhu, D. G. Gardner, and H. G. Chen, “Relationships Between Work Team Climate, Individual Motivation, and Creativity,” J Manage, vol. 44, no. 5, pp. 2094–2115, May 2018, doi: 10.1177/0149206316638161.

G. Canbaloğlu, J. Treur, and P. H. M. P. Roelofsma, “Computational modeling of organisational learning by self-modeling networks,” Cogn Syst Res, vol. 73, pp. 51–64, Jun. 2022, doi: 10.1016/j.cogsys.2021.12.003.

W. van Zetten, G. J. Ramackers, and H. H. Hoos, “Increasing trust and fairness in machine learning applications within the mortgage industry,” Machine Learning with Applications, vol. 10, p. 100406, Dec. 2022, doi: 10.1016/j.mlwa.2022.100406.

S. Singaravel, J. Suykens, and P. Geyer, “Deep-learning neural-network architectures and methods: Using component-based models in building-design energy prediction,” Advanced Engineering Informatics, vol. 38, pp. 81–90, Oct. 2018, doi: 10.1016/j.aei.2018.06.004.

D. Pavlenko, L. Barykin, S. Nemeshaev, and E. Bezverhny, “Individual approach to knowledge control in learning management system,” in Procedia Computer Science, 2020, vol. 169, pp. 259–263. doi: 10.1016/j.procs.2020.02.162.

A. Jamwal, R. Agrawal, and M. Sharma, “Deep learning for manufacturing sustainability: Models, applications in Industry 4.0 and implications,” International Journal of Information Management Data Insights, vol. 2, no. 2, Nov. 2022, doi: 10.1016/j.jjimei.2022.100107.

A. J. Khalil, A. M. Barhoom, B. S. Abu-Nasser, M. M. Musleh, and S. S. Abu-Naser, “Energy Efficiency Prediction using Artificial Neural Network,” 2019. [Online]. Available: www.ijeais.org/ijapr

M. Jamal El-Khatib, B. S. Abu-Nasser, and S. S. Abu-Naser, “Glass Classification Using Artificial Neural Network,” 2019. [Online]. Available: www.ijeais.org/ijapr

Y. Zhao, M. K. Hryniewicki, F. Cheng, B. Fu, and X. Zhu, “Employee turnover prediction with machine learning: A reliable approach,” in Advances in Intelligent Systems and Computing, 2018, vol. 869, pp. 737–758. doi: 10.1007/978-3-030-01057-7_56.

H. H. Patel and P. Prajapati, “Study and Analysis of Decision Tree Based Classification Algorithms,” International Journal of Computer Sciences and Engineering, vol. 6, no. 10, pp. 74–78, Oct. 2018, doi: 10.26438/ijcse/v6i10.7478.

S. Anitha and M. Vanitha, “Optimal artificial neural network-based data mining technique for stress prediction in working employees,” Soft comput, vol. 25, no. 17, pp. 11523–11534, Sep. 2021, doi: 10.1007/s00500-021-06058-9.

K. Sulaiman, L. Hakim Ismail, M. Adib Mohammad Razi, M. Shalahuddin Adnan, and R. Ghazali, “Water Quality Classification Using an Artificial Neural Network (ANN),” in IOP Conference Series: Materials Science and Engineering, Sep. 2019, vol. 601, no. 1. doi: 10.1088/1757-899X/601/1/012005.

T. Dudkina, I. Meniailov, K. Bazilevych, S. Krivtsov, and A. Tkachenko, “Classification and Prediction of Diabetes Disease using Decision Tree Method.”

C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature review on applying CRISP-DM process model,” in Procedia Computer Science, 2021, vol. 181, pp. 526–534. doi: 10.1016/j.procs.2021.01.199.

S. Jaggia, A. Kelly, K. Lertwachara, and L. Chen, “Applying the CRISP-DM Framework for Teaching Business Analytics,” 2020.

F. Azimah, K. Rizky, and N. Wardani, “SISTEM PENDETEKSI GEJALA AWAL COVID-19 DENGAN PENGGUNAAN METODE AI PROJECT CYCLE,” 2022, [Online]. Available: www.kaggle.com.

J. Yang, S. Rahardja, and P. Fränti, “Outlier detection: How to threshold outlier scores?,” in ACM International Conference Proceeding Series, Dec. 2019. doi: 10.1145/3371425.3371427.

M. Waskom, “seaborn: statistical data visualization,” J Open Source Softw, vol. 6, no. 60, p. 3021, Apr. 2021, doi: 10.21105/joss.03021.

D. (Christina) Geng, J. Innes, W. Wu, and G. Wang, “Impacts of COVID-19 pandemic on urban park visitation: a global analysis,” J For Res (Harbin), vol. 32, no. 2, pp. 553–567, Apr. 2021, doi: 10.1007/s11676-020-01249-w.

S. Maldonado, J. López, and C. Vairetti, “An alternative SMOTE oversampling strategy for high-dimensional datasets,” Applied Soft Computing Journal, vol. 76, pp. 380–389, Mar. 2019, doi: 10.1016/j.asoc.2018.12.024.

B. Deepa and K. Ramesh, “Epileptic seizure detection using deep learning through min max scaler normalization,” Int J Health Sci (Qassim), pp. 10981–10996, May 2022, doi: 10.53730/ijhs.v6ns1.7801.

H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion detection systems: A survey,” Applied Sciences (Switzerland), vol. 9, no. 20. MDPI AG, Oct. 01, 2019. doi: 10.3390/app9204396.

S. Christin, É. Hervet, and N. Lecomte, “Applications for deep learning in ecology,” Methods in Ecology and Evolution, vol. 10, no. 10. British Ecological Society, pp. 1632–1644, Oct. 01, 2019. doi: 10.1111/2041-210X.13256.

S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning,” Archives of Computational Methods in Engineering, vol. 27, no. 4, pp. 1071–1092, Sep. 2020, doi: 10.1007/s11831-019-09344-w.

O. Isaac Abiodun, A. Jantan, A. Esther Omolara, K. Victoria Dada, N. AbdElatif Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, p. 938, 2018, doi: 10.1016/j.heliyon.2018.

M. Al-Emran Khaled Shaalan Editors, “Studies in Systems, Decision and Control 335.” [Online]. Available: http://www.springer.com/series/13304

C. Cao et al., “Deep Learning and Its Applications in Biomedicine,” Genomics, Proteomics and Bioinformatics, vol. 16, no. 1. Beijing Genomics Institute, pp. 17–32, Feb. 01, 2018. doi: 10.1016/j.gpb.2017.07.003.

J. Yang et al., “Quantization Networks,” 2019.

S. Ruuska, W. Hämäläinen, S. Kajava, M. Mughal, P. Matilainen, and J. Mononen, “Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle,” Behavioural Processes, vol. 148, pp. 56–62, Mar. 2018, doi: 10.1016/j.beproc.2018.01.004.




DOI: http://dx.doi.org/10.30700/jst.v13i2.1367

Article Metrics

Abstract view : 364 times
PDF (Indonesian) - 302 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 SISFOTENIKA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Badan Pengelola Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (SISFOTENIKA) STMIK Pontianak.

 

Jurnal Ilmiah SISFOTENIKA terindex di :


   

   

  

    

    

    

   

 

 

 

ISSN Printed : 2087-7897

ISSN Online : 2460-5344


SERTIFIKAT PENGHARGAAN :

Jurnal Ilmiah SISFOTENIKA Terakreditasi Peringkat Empat

 

Partners & Co-Organizers:




Lisensi Creative Commons

Jurnal Ilmiah SISFOTENIKA: STMIK Pontianak Online Journal ISSN Printed (2087-7897) - ISSN Online (2460-5344) licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional. Flag Counter

View My Stats>